赵凤军

职称:副教授/博士生导师/硕士生导师

个人简介:

主要研究领域:人工智能、计算机视觉、医学图像处理、计算机辅助诊断、多模态影像组学

招生专业:

博士:软件工程(学术学位)

硕士:信息与通信工程(学硕)、计算机科学与技术(学硕)

软件工程(学硕+专硕)、新一代电子信息技术(专硕)

2015年毕业于西安电子科技大学获得工学博士学位,2019年晋升为副教授,2020年入选西北大学青年学术英才。近年来致力于人工智能、计算机视觉、医学图像处理、计算机辅助诊断、多模态影像组学的研究工作,主持国家自然科学基金面上项目、青年基金、陕西省国际合作项目、陕西省重点研发计划、陕西省自然科学基础研究计划、中国博士后科学基金面上项目、陕西省教育厅青年创新团队基金等多个项目,在国际知名学术期刊或会议上发表论文篇60余篇,其中SCI索引论文48篇,TOP论文14篇,A类会议论文4篇、B类会议3篇。授权或受理国家发明专利20余项,担任EMBC 2023 Session Chair,IEEE Transactions, IEEE Journal、IEEE Letters、CIT、JMRI、CIBM、MP、Scientific Data,以及EMBC, ISBI, MICCAI Workshop (MLMI) 等期刊或会议审稿人,获ISBI Outstanding Reviewer Award (2024)。

欢迎感兴趣的同学加入我们科研团队!

联系方式:fjzhao@nwu.edu.cn


科研成果:

部分期刊论文:

[21] Deep learning-based intratumoral and peritumoral features for differentiating ocular adnexal lymphoma and idiopathic orbital inflammation, European Radiology, 2024, https://doi.org/10.1007/s00330-024-11275-5. (通信作者)

[20] CORONet: A Cross-Sequence Joint Representation and Hypergraph Convolutional Network for Classifying Molecular Subtypes of Breast Cancer Using Incomplete DCE-MRI, IEEE Journal of Biomedical and Health Informatics, 2024, 28(4): 2103–2114. (通信作者)

[19] A deep learning model for predicting molecular subtype of breast cancer by fusing multiple sequences of DCE-MRI from two institutes, Academic Radiology, 2024, DOI: 10.1016/j.acra.2024.03.002. (通信作者)

[18] Self-Supervised Triplet Contrastive Learning for Classifying Endometrial Histopathological Images, IEEE Journal of Biomedical and Health Informatics, 27(12): 5970-5981, 2023. (第一作者)

[17] Automatic deep learning method for detection and classification of breast lesions in dynamic contrast-enhanced magnetic resonance imaging, Quantitative Imaging in Medicine and Surgery, 13(4): 2620-2633, 2023. (通信作者)

[16] MRI-Based Radiomics Nomogram for Preoperative Differentiation between Ocular Adnexal Lymphoma and Idiopathic Orbital Inflammation, Journal of Magnetic Resonance Imaging, 57 (5): 1594-1604, 2023. (通信作者)

[15] A deep learning model combining multimodal radiomics, clinical and imaging features for differentiating ocular adnexal lymphoma from idiopathic orbital inflammation, European Radiology, 32, 6922-6932, 2022. (通信作者)

[14] Diagnosis of endometrium hyperplasia and screening of endometrial intraepithelial neoplasia in histopathological images using a global-to-local multi-scale convolutional neural network, Computer Methods and Programs in Biomedicine, 221: 106906, 2022. (第一作者)

[13] Vessel Segmentation from Volumetric Images: A Multi-scale Double-pathway Network with Class-balanced Loss at the Voxel Level, Medical Physics, 48 (7): 3804-3814, 2021. (通信作者)

[12] Bag-of-features-based radiomics for differentiation of ocular adnexal lymphoma and idiopathic orbital inflammation from contrast-enhanced MRI, European Radiology, 31: 24–33, 2021. (通信作者)

[11] Machine learning for diagnosis of coronary artery disease in computed tomography angiography: A survey, Artificial Intelligence in Medical Imaging, 1(1): 31-39, 2020. (第一作者)

[10] Accurate Segmentation of Heart Volume in CTA with Landmark-based Registration and Fully Convolutional Network, IEEE Access, 7: 57881-57893, 2019. (第一作者)

[9] An automatic multi-class coronary atherosclerosis plaque detection and classification framework, Medical & Biological Engineering & Computing, 57(1): 245-257, 2019. (第一作者)

[8] Segmentation of blood vessels using rule-based and machine learning based methods: a review, Multimedia Systems, 25(2): 109-118, 2019. (第一作者)

[7] Semi-supervised Cerebrovascular Segmentation by Hierarchical Convolutional Neural Network, IEEE Access, 6: 67841-67852, 2018. (第一作者)

[6] Efficient Kidney Segmentation in Micro-CT Based on Multi-atlas Registration and Random Forests, IEEE Access, 6: 43712-43723, 2018. (第一作者)

[5] A monocentric centerline extraction method for ring-like blood vessels, Medical & Biological Engineering & Computing, 56(4), 695–707, 2018. (第一作者)

[4] Quantitative analysis of vascular parameters for micro-CT imaging of vascular networks with multi-resolution, Medical & Biological Engineering & Computing, 54(2): 511-524, 2016. (第一作者)

[3] Automatic segmentation method for bone and blood vessel in murine hindlimb, Medical Physics, 42(7): 4043-4054, 2015. (第一作者)

[2] In vivo quantitative evaluation of vascular parameters for angiogenesis based on sparse principal component analysis and aggregated boosted trees, Physics in Medicine and Biology, 59(24): 7777-7791, 2014. (第一作者)

[1] Solving inverse problems for optical scanning holography using an adaptively iterative shrinkage-thresholding algorithm. Optics Express, 20(6):5942-5954, 2012. (第一作者)

部分会议论文:

[9] Orbital Lymphoproliferative Disorder Diagnosis with Incomplete Multimodal Images based on Self-/Cross-Representation and Hypergraph Ensemble, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), December 5-8, 2023, Istanbul, Turkey. (通信作者)

[8] WheelNet: Weakly-Supervised Multi-Contrastive Learning for Predicting Vulnerable Coronary Atherosclerosis Plaques from Coronary Computed Tomography Angiography, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), December 5-8, 2023, Istanbul, Turkey. (通信作者)

[7] Fengjun Zhao, Kaiming Huang, Zhipeng Sun, Xin Chen, Xiaowei He, Bin Wang*, Cao Xin*, Consistent Learning-Based Breast Tumor Segmentation and Its Application in Sentinel Lymph Node Metastasis Prediction, 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), July 24-27, 2023, Sydney, Australia (Oral). (第一作者)

[6] Assessing the Role of Different Heterogeneous Regions in DCE-MRI for Predicting Molecular Subtypes of Breast Cancer based on Network Architecture Search and Vision Transformer, 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), July 24-27, 2023, Sydney, Australia (Poster). (通信作者)

[5] FISTA-NET: Deep Algorithm Unrolling for Cerenkov luminescence tomography, 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), July 24-27, 2023, Sydney, Australia. (Oral). (通信作者)

[4] Semi-BGSegNet: A semi-supervised boundary-guided breast tumor segmentation network, IEEE 20th International Symposium on Biomedical Imaging (ISBI), April 18 - 21, 2023, Cartagena, Colombia (Poster). (第一作者)

[3] Recognition for multiple sources of bioluminescence tomography: a comparative study, Proc. SPIE, Tenth International Conference on Information Optics and Photonics (CIOP), July 8, 2018 - July 11, 2018, Beijing, China, 10964: 1096415. (通信作者)

[2] ACM International Conference Proceeding Series, 8th International Conference on Internet Multimedia Computing and Service (ICIMCS), August 19-21, 2016, Xi´an, Shanxi, China), Volume: 19-21-August-2016, Pages: 234-237. (第一作者)

[1] A hard-threshold based sparse inverse imaging algorithm for optical scanning holography reconstruction. Proc. SPIE 8281, Practical Holography XXVI: Materials and Applications, 82810I, 2012. (第一作者)

部分发明专利:

[10] 一种结合多种网络的半监督冠状动脉分割系统及分割方法,中国发明专利,专利号:ZL202010160281.2

[9] 结合卷积神经网络与循环神经网络的血管中心线追踪方法,中国发明专利,专利号:ZL201911108172.X

[8] 动态增强磁共振成像处理方法、系统、存储介质、终端,中国发明专利,专利号:ZL202010160282.7

[7] 一种冠脉斑块数据检测方法、系统、存储介质、终端,中国发明专利,专利号:ZL202010160279.5

[6] 基于关键点检测和深度学习的软组织器官图像分割方法,中国发明专利,专利号:ZL201810772895.9

[5] 一种基于高维空间变换的数据扩增方法、机器识别系统,中国发明专利,ZL201710899032.3

[4] 基于中心线提取的血管图像分割方法、核磁共振成像系统,中国发明专利,专利号:ZL201710775038.X

[3] 一种荧光分子断层成像目标可行域选取方法,中国发明专利,专利号:ZL201711078146.8。

[2] 基于统计形状模型的医学图像Graph Cut分割方法,中国发明专利,专利号:ZL201610838092.。

[1] 一种基于统计形变模型的医学图像分割方法,中国发明专利,专利号:ZL201610020569.3


主持科研项目:

[9] 国家自然科学基金面上项目,面向不完整多模态影像的眼眶淋巴增生病可信赖诊断方法研究,项目号:62476218.

[8] 陕西省重点研发计划(一般项目-社会发展领域),面向有缺失多模态影像数据的眼眶淋巴增生病AI辅助诊断方法研究,项目号:2024SF-YBXM-321.

[7] 陕西省教育厅青年创新团队科研计划项目,融合多模态影像组学及临床特征的眼眶淋巴增生病鉴别诊断方法研究,项目号:22JP087.

[6] 国家自然科学基金青年基金,基于CT血管造影成像的冠脉斑块识别及狭窄功能评估方法研究,项目号:61601363

[5] 陕西省国际科技合作计划项目(一般项目),基于多策略深度学习的小样本冠脉斑块高风险影像学特征AI辅助诊断研究,项目号:2021KW-55

[4] 中国博士后科学基金面上项目,小样本冠脉斑块检测及其易损性评估方法研究,项目号:2019M653717

[3] 陕西省自然科学基础研究计划,,基于深度卷积网络的冠脉斑块自动识别与分类方法研究,项目号:2017JQ6017

[2] 陕西省教育厅专项科研计划项目(自然科学专项),基于深度学习的冠脉粥样硬化斑块自动检测方法研究,项目号:18JK0778

[1] 横向课题,基于数据驱动的卫星星座物理拓扑健康评估技术研究


教学情况

本科生教学:《信号与系统》、《离散数学》、《高频电路》

研究生:共同承担《数字视频图像处理》、《数值分析》、《多模图像分析》、《影像组学分析及应用》


其他信息

中国计算机学会CCF会员,中国生物医学工程学会会员,陕西省计算机学会-生物医学智能专委会委员

担任IEEE Transactions (TMI、TSMC、TASE、TAI、TRPMS、TCDS), IEEE Journal (JBHI)、IEEE Letters (SPL)、CIT、JMRI、CIBM、MP、Scientific Data、上海交通大学学报、工程科学学报,以及EMBC, ISBI, MICCAI Workshop (MLMI) 等期刊或会议审稿人。


更多科研信息详见https://www.researchgate.net/profile/Fengjun-Zhao



地址:西安市长安区郭杜教育科技产业园区学府大道1号  邮编:710127

版权所有:西北大学 ICP备案号:陕ICP备05010980号        后台登陆